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ABSTRACT

A numerical procedure is presented for the determination of the
dynamic response of rectangular plates and cylindrical shells subjected
to stationary time dependent loads as well as to multiple loads moving with
constant velocity along any path on the structure. The masses of the
moving loads are included in the analysis.

Finite element models are adopted to reduce the continuous media of
the plate and the cylindrical shell to systems having a finite number of
degrees of freedom, with inertia forces concentrated at a finite number of
nodes. Displacement functions are assumed for each of the constituent
elements to obtain node forces equivalent to the applied loading. The dis-
placement method of analysis is employed, considering three and six
degrees of freedom at each node for the plate and shell model, respectively,
to obtain a set of simultaneous differential equations describing the motion
of the models. These equations are solved by a step-by-step numerical
integration technique to find the displacements and the concentrated forces
at the nodes of the models.

Numerical results are presented for platés and for circular cylindrical
shells. The response of plates subjected to stationary impact load is in-
vestigated as well as the case of plates carrying single or multiple loads
and masses moving with various velocities. Both square and rectangular
plates, each with simply supported and clamped boundaries, are considered.
Also continuous plates clamped at the periphery are investigated. The
circular cylindrical shells considered in the numerical samples are subjected

to stationary impact loads only.
viii




This report includes most of the material in ""Elastic Response of
Rectangular Plates Subjected to Dynamic Loadings'', Report S-67-4,
which appeared in April, 1967. The scope of the latter report is extended

herein to include additional topics discussed above.
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INTRODUCTION

The availability of digital computers to solve large numbers of simul-
taneous algebraic equations has spurred the development of various finite
element techniques for plane stress problems, for plates in flexure, for
shells, and even for solids. In general, the finite element approach to a
continuous medium reduces it to a system with a finite number of degrees of
freedom, thereby facilitating the solution to problems of a mathematically
complex nature.

The method of analysis of a static plate or shell problem by a finite
element model is similar to the analysis of a framed structure. However,
dynamic analysis of a plate or shell with moving forcing functions requires
modifications to be discussed in the development.

As in the case of a framed structure with a large number of degrees of
freedom, the normal mode method of analysis for moving masses acting on
finite element models would be timewise prohibitive even when a large-scale
computer is employed.

No solutions are known for plates or cylindrical shells with arbitrary
restraints subjected to multiple moving forcing functions.

The method of analysis presented here is an extension of the procedure
H. Allik1 used to study the response of space frames to moving mass

loadings.

1The superscripted numbers refer to References.



PURPOSE AND SCOPE

The purpose of this research is to develop an approximate method for
determining the elastic dynamic response of isotropic rectangular plates and
cylindrical shells. Stationary loads varying arbitrarily with time, as well
as loads and load-masses moving with a constant velocity across the struc-
tures are considered. The loads and masses are assumed to remain in con-
tact with the structure throughout the analysis.

The method of analysis is based on the theory of thin plates and shells
with small deflections. The approach used is a numerical one. The contin-
uous medium of the plate and the shell is each reduced to a system with a
finite number of degrees of freedom by means of a finite element model.

The distributed mass of the system is concentrated at a finite number of
points or nodes of this model. For a load acting at an arbitrary point of the
structure at any instant of time, a set of equivalent node forces is found by
assuming displacement functions for each of the finite elements. The as-
sumed displacement functions also permit the evaluation of a set of node
forces equivalent to the inertia forces associated with a concentrated mass
at an arbitrary point of the structure. Deformations and forces are obtained
only at the nodes of the plate and the shell.

The set of simultaneous differential equations of motion obtained in each
case is solved by the linear acceleration method, a step-by- step numerical
integration technique in which the accelerations of the nodes are assumed to

vary linearly over each time interval.



Numerical samples are presented to demonstrate the feasibility of the
solution with a large scale digital computer.
The applicability of the procedure to plates of variable thickness, to

orthotropic plates, to shells of arbitrary shape, and to other types of

structures is discussed.



HISTORICAL REVIEW

Exact solutions of the partial differential equations governing the dy-
namic behavior of plates and shells are available for only relatively simple
types of loading and special boundary conditions. Consequently, to obtain
solutions to many problems of practical interest approximate methods of
solution must be used. Such methods of analysis, which are numerical in
nature, have become more popular in recent years because of the availability
of electronic computers. In general, the approximate methods of solution
are of two basic types. In one case the governing differential equation is
solved by some approximate method. In the other case, rather than solve
the actual differential equation, some fictitious discrete element system is
substituted for the plate.

Of the approximate methods of analysis falling in the first category, the
most popular and rewarding one is the finite difference technique in which the
numerical solution of the governing differential equation is obtained at some
specified finite number of points by apprbximation of the partial derivatives.

An alternate approach to the approximate analysis of plates and shells is
by a discrete or finite element technique. These techniques can be divided
into two basic categories. One of these categories included the methods in
which the continuous medium is subdivided into a number of small elements,
and these elements are used to obtain the solution. For the sake of clarity,
this method of analysis will be herein referred to as the continuous finite
element approach. The stiffness matrix relating the displacements of the

nodes at the corners of the elements to the forces at these corners of the




element has then been obtained. Once this stiffness matrix is available,
static problems can be solved by the conventional displacement method of
structural analysis. Alternately, the force method of structural analysis
has been employed with flexibility matrices.

A stiffness matrix for a rectangular plate element in bending has been
obtained by R. J. Melosh2 by assuming third-order polynomials for the dis-
placements along the edges of the element. Numerical examples obtained
were compared with known series solutions. It was demonstrated that as
the number of elements used is increased convergence to the final solution
is not always monotonic. In a later paper3 Melosh provides a criterion to
insure monotonic convergence using an element stiffness matrix obtained by
assuming a more complicated function for the element displacements.

A different stiffness matrix for a rectangular plate element in bending
has been derived by O. C. Zienkiewicz 4,5 and Y. K. Cheung4 by assuming a
fourth order twelve-term polynomial function for the displacements of an
element.

Triangular plate elements have been used as well for flexure in the con-

6, 7’8’9. For example, R. W. Clough8 has

tinuous finite element technique
compared the numerical results obtained by assuming various displacement
functions for an element to obtain the stiffness matrix. Clough indicated that,
for the example considered, convergence was monotonic as the number of
elements was increased. However, he also pointed out that convergence
does not necessarily imply convergence to the correct solution.

It has been observed that by assuming a displacement function for an

element, vertical displacement compatibility between adjacent elements for



a plate in flexure can be maintained all along the edges of the elements, but

98,10 1 4. H. pianl®

normal slope compatibility is in general violated.
indicates that normal slope compatibility could be maintained as well when

the element stiffness matrix is derived by assumed stress distributions using
the principle of minimum complementary energy.

On the other hand, as already mentioned, plates have also been analyzed
by various discrete or finite element methods in which some fictitious Sys-
tem is substituted for the actual plate medium. It has been pointed out by
S. Spierig11 that the idea of representing a continuous medium by a frame-
work was conceived by F. Klein12 as early as 1903. Klein indicated the
equivalence of the plane state of stress in a disk and in a grid framework.

In 1906 K. Wieghardt13 applied this analogy to engineering problems. How-
ever, at that time Wieghardt approximated the stresses in frameworks from
the plane stress condition in a beam. In 1927, the ideas of Klein and Wieg-
hardt were used by W. Riedel14 who calculated stresses in a continuous -
medium by use of a grid of square elements consisting of bars. The analogy
of plates in flexure to frameworks was originated by A. P. Hrennikoff in
194015’ 16. Hrennikoff15 also derived frameworks analogous to a plane stress
condition in a disk. In considering a plate in flexure, Hrennikoff subdivided
the plate into small square elements, and then derived a framework element
analogous to the plate element. For Poisson's ratio of 1/3, such a square
framework element consisted of six bars, each possessing a flexural stiff-
ness. For arbitrary values of Poisson's ratio, a more complicated frame-

11, 17

work model was used by Hrennikoff. More recently, S. Spierig has



extended Hrennikoff's ideas to devise framework element models for rec-
tangular, triangular and trapezoidal plate elements as well. These models,
however, are somewhat more complicated, and are all restricted to Poisson's
ratio of 1/3.

In a paper published in 1965, A. L. Yettram and H. M. Husain18 have
derived a relatively simple rectangular framework model for a plate in
bending for an arbitrary value of Poisson's ratio. This model (see Fig. 1)
has six bars as does the Hrennikoff's model for Poisson's ratio of 1/3, but
in addition torsional stiffnesses are prescribed for the peripheral beams.

For all of the framework element models described above, the model is
not a physical one since the bar stiffnesses may take on negative values for
certain elastic constants. This, however, places no limitations on the analogy.

With the framework element bar properties known, the framework ele-
ment stiffness matrix has been calculated. From that point on the analysis
by the framework analogy and by continuous finite element approach is iden-
tical. Deflections for a particular problem obtained by Husain18 have been
found to agree closely by J. L. Tocher19

In addition to the framework analogies described above, various other
fictitious systems have been substituted for the plate in flexure to obtain ap-
proximate solutions. A.H.S. Ang and N. M. Newma.rl«t20 have used a model
for the plate consisting of rigid bars, elastic hinges and coil springs. M.
Badir21 has used a model with orthogonal beams and coil springs, while
E. Lightfoot22 has used one with orthogonal beams and torsion bars. A.L.
Yettram and H. M. Husain23 have used a model of only orthogonally connected

beams, using iteration for Poisson's ratio other than zero.



For the analysis of static shell problems by a finite element approach,
a stiffness matrix for a plate element in plane stress has generally been
combined with one for a plate in flexure to include the membrane stresses of
the shell in the analysis. In addition to the plane stress framework models

used by Hrennikotf % 16 and Spierign’ 17

» Which have already been men-
tioned, there are various other models available for this purpose. For ex-
ample, Hrennikoff's plane stress framework model has been extended by
C.W. McCormick24, and A.L. Yettram and H. M. Husainzs. The plane
stress framework model of the latter two authors consists of six beams, as
in the case of the framework model for out-of-plane bending by the same
authors. The beams possess stiffnesses for in-plane movement of the model.
In the continuous finite element approach for plane stress, rectangular

8,26

elements have been used, for example, by R.W. Clough , and triangular

elements have been used by J.L. Tocher and B.J. Hartz27 and by others8’ 28.
Extension of finite element techniques to cylindrical shells by use of the
framework analogies for plane stress and out-of-plane bending has been
suggested by Hrennikoff16 and McCormick24. Peste117, in fact, extended
the procedure to cylindrical shells using Hrennikoff's models, but only for
the limited case of Poisson's ratio of 1/3. Later, E.F. Benard29 used
another type of a framework model to study the static behavior of cylindrical
shells. Zienkiewicz5 has employed the continuous finite elements for plane

stress and out-of-plane bending to obtain a stiffness matrix for a rectangular

shell element, which can be used to analyze cylindrical shells. A. Hrennikoff



and S. S. Tezca.n30 have used yet another approach to study the static cylin-
drical shell behavior. These authors have combined the continuous finite
element technique of Clough26 for plane stress with Yettram and Husalin's18
framework element approach for out-of-plane bending to analyze cylindrical
shells. A discrete element model consisting of rigid bars and deformable
nodes has been used by B. Mohraz and W.C. Schnobrich31 to study cylindrical
as well as other types of shells.

The dynamic analysis of plates and shells has been limited to relatively
simple cases. Special boundary conditions, simplified loadings, or both
have been used in such analysis.

The natural frequencies of plates in flexure have been studied by E. C.

17, 32, 33, 34 32, 35

Pestel and F. A. Leckie by employing the framework model

of Hrennikoffls’ 16.

Exact solutions to the differential equations of motion governing the be-
havior of plates subjected to multiple moving mass loads have been obtained
by A. P. Cappelli36 in the form of triple infinite series. These solutions,
however, are limited to plates with simply supported boundaries.

For cylindrical shells, mathematical solutions have been obtained by
J. P. Jones and P.G. Bhuta37 for moving loads. These solutions, however,
are only for infinitely long cylinders subjected to symmetrical, ring loading
moving at constant velocity.

The dynamic response of space frames to moving loads and masses was

investigated by H. Allikl in 1966. Allik used a discrete mass model, con-

sidering six degrees of freedom at each node, to obtain the set of governing
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differential equations. Allik then solved these equations numerically by
several step-by-step numerical integration techniques. Of the methods used
in his study, Allik found the linear acceleration method to be the most efficient
technique time-wise for solving the differential equations by use of a computer.
Allik1 has also pointed out that his procedure can be extended to study

plates and shells subjected to moving mass loads.



11

METHOD OF ANALYSIS

A. Formulation of the Plate Problems

1. - Discrete Element Model

The response of rectangular plates to dynamic loadings can be de-
scribed approximately by the displacements of the plate at a finite number of
points. Since the method of analysis presented herein is based on the theory
of thin plates with small deflections, only the deflection of the plate normal
to its plane, and the rotations about the two axes lying in the middle plane of
the plate will be considered. In Fig. 1is shown a rectangular plate of di-
mensions LX’ LY and a constant thickness h with X and Y axes taken in the
middle plane of the plate, and the Z axis taken normal to that plane and di-
rected downwards, the plate is divided by an orthogonal grid into small plate
elements with dimensions L and cL. The intersections of the grid lines, i.e.
the corners of the small plate elements, will be referred to as the nodes. It
is at these nodes that the displacements are to be described.

A typical small plate element is shown in Fig. 2 with its orientation to
the XYZ coordinates of the plate. The displacements of the nodes of the plate
element, and the generalized forces, i.e. the forces and moments, acting on
the plate element at the nodes are shown in their positive directions in vector
notation. Right hand screw rule is used for the signs of the rotation and
moment vectors. Also shown in Fig. 2 are the element coordinates axes x

and y which will be used later.
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The sign convention and orientation used for the displacements of the
plate at the nodes and for the generalized forces acting on the plate at the
nodes are identical to those of the displacements of a plate element and of the
generalized forces acting on a plate element, as shown on Fig. 2. There-
fore, with the sign conventions adopted, plate displacements and plate generalized
forces can be transformed into displacements and generalized forces of the
element, or vice versa, by summations without geometrical considerations.

It has been proved by A.L. Yettram and H. M. Husain 18 that an ana-
logous framework element of six beams with flexural and torsional properties
shown in Fig. 3 can be substituted for each of the small plate elements into
which the plate was divided. The beams of the framework element are rigidly
joined to the beams of the adjacent elements at the nodes only. Since in the
resulting framework model for the plate there may be two parallel beams be-
tween two interior nodes, the beams are imagined to occupy the same physical
space. Hence, strictly speaking, the resulting framework is considered here
to be a fictitious rather than a physical model for the plate.

Basically, the beam constants for the framework element of Fig. 3
were derived by Yettram and Husain 18 by comparison of deformations of the
plate element of Fig. 2 and the framework element of Fig. 3 when uniform
moments and torques were in turn applied to the plate element and statically
equivalent concentrated moments and torques were applied at the nodes of the
framework element. Therefore inherent to this derivation is the assumption
that the distribution of moments and torques in the plate is such that linear

distributions of these results on a plate element. Thus the analogy of Yettram
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BEAM PROPERTIES:
T = (t-*vL K
1 2(1-+?) 12
I= (Cz—'l’) L. h3
2 2c(=-v¥ 12
__»r’L n®
> 2c¢(1-v» 12

GJi_a-3v)L  h?

E 2% 12

Gz _c(-30L p°
o(t-»d 12

= 0

m&

where h = plate thickness
v = Poisson’s vatio for plate material
E = modulus of elasticity of plate matevial
I = beam moment of inertia for bending out
of plane of plate
GJ= beam torsion constant

FIG. 35— PLATE ELEMENT FRAMEWORK MODEL




16

and Husain 18 is theoretically correct only in the limit when the elements
become infinitely small. However, elements of finite and relatively large
size yield results of sufficient accuracy, as will be demonstrated by the
numerical results presented subsequently.
2. - General Equations of Motion

Knowing the stiffness properties for each of the beams in the frame-
work element of Fig. 3, the stiffness matrix of the plate element can be as-
sembled to relate the node displacements to the node forces of the element by
the following expression.

EYRENEEY 1)
where [ Si} is the vector of the 12 generalized internal forces acting

at the nodes of element i. (See Fig. 2.)

Fki] is the 12x12 stiffness matrix of element i given in the

Appendix.

u, , is the vector of the 12 displacements of the nodes of the
element i. (See Fig. 2.)

The equilibrium of generalized forces at nodes yields
n
[®} =% |s] (@)
i=1

where the summation extends over the n elements into which the plate was
divided. [ R] » the vector of external forces acting at the nodes, con-

sists of the following:




1. - External forces [Q} n applied at the nodes.
2. - Equivalent node forces ‘Q I e from external forces applied

to the plate at points away from nodes.

n

e}, - = |7

i=1

where l Fi} is the vector of 12 generalized equivalent node
forces associated with element i. These will be derived in
a subsequent section.
3. - Inertia forces | R } .
in
The inertia forces are found as follows. For an element i, by D'Alembert's

principle

|Ri}in - [mi] lﬁi} | (3)

where [mi] is the diagonal 12x12 element mass matrix. The elements
of this matrix, along with the assumptions used for its
derivation, are given in the Appendix.
‘ iii] is the vector of the 12 accelerations of the nodes of the
element.
Summing the contributions from the inertia forces acting on all the
elements, by Eq. (3)

(®ia=- = [m] 3] @

i=1

or

%) in

il

[m] (3] ®

17



where n is the number of elements into which the plate was divided.
n
[ m ] = Z [mi] is the mass matrix for the entire structure.
i=1
It can be assembled by placing the elements
of [mi] in the appropriate rows and columns

of [m ] and adding the overlapping terms.

Substituting [si} from Eq. (1) into Eq. (2) results in

() -Z 4] 1) o
(=) -[x] {u] 8

[ki] is the stiffness matrix for the entire structure,

[
1l
[a—y

assembled in the same manner as the mass
matrix [m] .
Substituting the components of { R] into Eq. (7) yields the equations of

motion for the discrete element plate structure

[m]lﬁ}+[k]!u}=‘Q‘ (8)
where ‘Q | = { Q} nt ‘ Q ]e' It should be noted that this vector may
vary with time.

Eq. (8) represents a set of simultaneous, linear, second order differential

equations equal in number to the number of degrees of freedom for the
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discrete element plate structure. This equation was derived without making
reference to the plate boundary conditions. To include these or any other
restraints, after assembling the [ k] and [m ] matrices the rows and col-
umns corresponding to the restrained displacement components should be
removed. Accordingly, the same rows are to be removed from the vectors
in Egs. (5), (7) and (8).

Equation (8) was derived with rotary inertias included. When these
are not included, the number of equations can be reduced to the number of
degrees of freedom in deflection only, as shown in a subsequent section.

By use of the linear acceleration method, as shown later, node dis-
placements can be found for any time. Then, the concentrated forces and

moments acting at the nodes of element i can be found from

(s =[] fw) - (=) | ®)
The internal plate forces and moments concentrated at a typical interior
node can then be found by considering two adjacent elements at that nodé and
summing the forces and moments acting at that node on these elements.

Alternately, the plate forces and moments at the nodes can be ob-
tained from the transverse node deflections, using the well-known plate
formulas.
3. - Forcing Functions

a. Moving Forces
In the analysis of the discrete element structure, it is necessary that

external forces act only at the nodes. Since a moving load or a stationary
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load varying with time may be acting at an arbitrary point on an element of
the structure, a set of equivalent forces acting at the nodes of this element, which
would cause the same displacements in the structure, must be determined. In
the following derivation the load on the plate will be assumed to consist of
only force components, and it will be assumed to remain in contact with the
plate at all times.

Consider a moving force P acting in the Z-direction at an instant of
time t = t1 when it is located on an element at x = a and y = b of the element
coordinates shown on Fig. 2. Applying virtual displacements Bui at this
instant of time at the nodes of this element, the deflection under the load

caused by éui is assumed to be

12
w, (% ¥, ty) = 2 A (% y) bu () | (10)
i=1
X=a X=a
y=b y=b

where Ai (x, y) is the assumed deflection‘ of the plate element due to a
node displacement u, = 1 and U =0 for j # i. Ai x, y)
is given in the Appendix.
su, (tl) is the i-th virtual node displacement of the element in
orientation and sign convention identical to u, shown
on Fig. 2.
For the dynamic system at time tl, the virtual work done by the equivalent

node forces Fi must equal the virtual work done by the force P.
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Hence
12
2. F, su (t) = Pw_(x, y, t,) (11)
i=1

X=a
y=b

Substituting for LR x, vy, tl) from Eq. (10), Eq. (11) yields

12 12
2F, su () =P Y A (xy) su (t) (12)
i=1 i=1
X=a
y:
from which the i-th equivalent node force is
Fi =P Ai (%, v) (i=1, 2,..., 12) - (13)
xX=a
y=b

Equation (13) was derived for a single moving load. This equation ob-
viously is also valid for a stationary time-varying load P applied at
x =aand y = b. The equivalent node forces due to several stationary
time-varying loads or due to multiple moving loads can be obtained by
summing the equivalent node forces from Eq. (13) for each load applied.
b. - Moving Masses
To obtain the equivalent node forces resulting from a moving mass,

the interaction force between the plate and the mass must be evaluated. In
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this derivation, the moving mass on the plate will be assumed to remain in
contact with the plate at all times, and the rotary inertia effect of this mass
will be neglected.

It will be assumed that the deflection of a plate element under a mov-
ing mass at x, y on the element can be expressed by

12
Wik ¥ 1) =D A ¥)ug © (14)
=1
where Aj (x, y) is the same as in Eq. (10) if i = j.
u]. (t) is the j-th actual node displacement of the element
nodes. (See Fig. 2.)

Since Eq. (14) represents the movement of the mass in the Z-direction

while the mass itself is moving along the plate, the deflection w in

Eq. (14) is

Wz, y, ) =w[x®),y )¢ ] (15)

Denoting by Vx and Vy the x and y components of the velocity of the

mass along the plate,

v, = %Et (16a)
Vy = %‘tz (16b)

and hence, differentiating w twice with respect to time and using

Egs. (16),
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. ” 2 9"w 2 "w oW
w[x@), vy ()t ]- v, 2 \ " +2V Vs
2
r2v. 2 ¥ _ Loy azw + azw (17)
X 9xat y dyat at2

Substituting the derivatives of w obtained from Eq. (14) into Eq. (17)

yields

12
. 2 2
) A u
W[, y0, t] =3 v, A U Yy A gyt VRV
=1

+2V_ A, u. +2V A, u. + Au. 18
X j,x ] Vi yi ]uJ) (18)

where Aj <%’ etc., represents the second derivative of
b

A]. with respect to x, etc. (See Appendix.)

For a moving mass M located at x = a and y = b at time t1 the asso-
H

ciated inertia force is obtained from D'Alembert's principle as

- MW [ x(t), (), t] (19)
X=a
y=Db
t =t1

where W is given by Eq. (18). The i-th equivalent node force on an
element at time t1 is determined by substituting expression (19) for P

in Eq. (13).



AR Y e S iy

12 4 2

F.=-M A A, u., + A A,

1 2:1 (VX 1, XX 7j VY 1 1, ¥y J
J:

X'yij, xyj X1, x y i,y
+A1Ajii) (i=1,2,...,12)
X=a
y=b
t=t,

This equation can be written as

Z (k*u +d*u +m*u)

i 1 ]
x=a
y:
=t,
where k.*=MA, (V 2A. +V 2A. +2V_V A, )
1] 1 X ], XX Yy 1, Vyy X'y, Xy
Xx=a
|y=p

2MA (VA _+V_A,
Uit = 2MA VA 5 T V4 ) x=a

y'."—'

= (MA, A)
1] X=a
y=b

24

(20)

1)

The'vector of 12 equivalent node forces associated with element r is then

AR = L] o) o (o] (5] + [me] ()

(22)
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where the 12x12 matrix [kr*] is assembled by placing each ki“j in the
i-th row and j-th column of the matrix. The matrices [dr*] and [m;] are
obtained similarly. Adding the contributions from all the moving masses on

all the elements of the plate yields

'|Q|e=[k*][“l+[d*]{ﬁl+[m*]{ﬁl (23)

n

where [k*] => [k;]

r=1

n

where the summation is to n, the number of elements of the structure.

Adding Eq. (23) to the node forces in Eq. (8) gives the equations of motion

for the discrete-element plate with moving masses
[a] {5} +[o]{e)« [ ]{u) - {e] e
| = [m] [ ] | (24a)

[ a*] (24b)

[x]=[& ]+ [1*] (24c)

and where { Q] includes the node forces from all forces, static and

g
=3
@
]
o

| am—
gI
i

| —
o

L )
b

moving, on the plate except those caused by the masses. Eq. (24)
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represents a set of simultaneous, linear, second order differential equations |
where the coefficient matrices vary with time.

As shown later, Eq. (24) can be solved for node displacements, vel-
ocities and accelerations at a given time. Then the concentrated forces and

moments acting at the nodes of element r can be found from

(s =D faf e [me] () + [ ] &) - (7] 09
Alternately, as before, the plate forces and moments at the nodes can
be obtained from the transverse node deflections, using the plate equations
from elasticity.

Eq. (24) was derived with rotary inertias of the plate included. In
such a case the number of simultaneous equations in the set of Eqs. (24) is
equal to the number of degrees of freedom of the plate model considered.
When the rotary inertia of the plate is neglected, the number of equations
can be reduced as explained in a subsequent section.

B. Formulation of the Cylindrical Shell Problems

1. General Remarks

The analysis of cylindrical shells and the analyses of rectangular
plates is similar when finite elements are used for both structures. Due to
the presence of membrane stresses in a cylindrical shell, a finite element
model for the latter must, in general, possess six degrees of freedom for
each node, while a finite element model for a plate in ﬂexure only has three
degrees of freedom at each node. Therefore, the stiffness matrix for a

shell element must be a 24 by 24 matrix. Moreover, because of the




27

curvature of the shell, the coordinate systems of the overall structure and
its elements do not coincide. Therefore geometric transformation matrices
must be used to relate the displacements and forces from one coordinate
system to the other. Also, in addition to the influence function Ai (%,v)
used for the plate, another influence function must be considered for the
shell because of the additional degrees of freedom present. Aside from the
differences outlined above, the method of analysis for a rectangular plate
and a cylindrical shell is the same.

2. Discrete Element Model

A right-handed cylindrical coordinate system XYZ, as indicated on
Fig. 4, is adopted for the overall shell structure. The X-axis is in the
middle surface of the shell and parallel to the axis of the shell. The Z-axis
is normal to the surface of the shell and directed inwards. This set of co-
ordinates is henceforth referred to as the system coordinates.

The rectangular finite elements for the shell, to be used subse-
quently, are obtained by subdividing the shell by an orthogonal grid parallel
to X and Y axes. The intersections of such grid lines will henceforth be
referred to as the nodes of the shell. Each of the small shell segments ob-
tained by such a subdivision is then replaced by a flat plate. It is clear that
such a substitute structure of flat plate segments approaches the physical
structure of the actual shell only in the limit as the grid size becomes in-
finitely small. For any finite sizes of the plate segments, the actual

cylindrical shell structure can only be approximated.




FIG. 4 -SYSTEM COORDINATES OF A
CYLINDRICAL SHELL
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On Fig. 5 is shown a typical shell element, i.e. a small rectangular
plate that was substituted for a small shell segment as described above. The
corners of such an element coincide with the nodes of the shell. It is at
these corners, or nodes, that displacements and concentrated plate forces
are to be considered. The right-handed element coordinate system shown
on Fig. 5 is oriented so that the x-axis is parallel to the X-axis of the system
coordinates, and the z-axis is normal to the element and directed toward the
center of curvature of the shell. The node displacements u, and the gener-
alized node forces Si, which always refer to the element coordinate system,
are shown on Fig. 5 in their positive directions. Vector notation with right-
hand screw rule is used for moments and displacements on the figure.

The sign convention and orientation used for the node displacements
q, and node forces Qi, which always refer to the system coordinates, is
shown on Fig. 6. Again a right-hand screw rule is used for the moment
and displacement vectors.

It is to be noted that the numbering of displacements and forces on
both Fig. 5 and 6 refers only to a relative sequence adopted in conjunction
with matrices to be developed subsequently.

The orientation of the system coordinates YZ with respect to the
element coordinates yz is indicated on Fig. 7. For a circular cylindrical

shell the angles ar and ap are equal.

In the subsequent analysis of the cylindrical shell, the framework
analogy for plane stress developed by Yettram and Husain25 is combined with

the framework analogy for plates in flexure by the same authors which was

already discussed.
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As for plates in flexure, Yettram and Husain25 have also shown that
for a plate in plane stress an analogous framework of beams can be sub-
stituted to approximate the displacements and stresses in the plate. For
each rectangular plate element six fictitious beams are substituted. The
arrangement of the beams in this analogous framework element is identical
to that of the framework element for a plate in flexure shown on Fig. 3.
However, for the framework element for plane stress all of the beams
possess extensional stiffnesses, and the four peripheral beams also have
flexural stiffnesses for in-plane bending. The derivation of the above beam
constants is quite similar to the derivation of beam constants for the frame-
work analogous to a plate in flexure. Thus, the assumption used for the
plate in plane stress is that the direct stresses and shears are constant
along the edges of an element. The implications of such an assumption are
analogous to those for a plate in flexﬁre.

Since in the subsequent analysis linear theory is used, with changes
in geometry not being considered, the beam.properties for plane stress and
those for out-of-plane bending may be combined to obtain a framework
model analogous to a shell element, as to the one on Fig. 5. Such a frame-
work model for a shell element with the appropriate beam constants is
shown on Fig. 8.

3. General Equations of Motion

With the beam constants of a framework model shown on Fig. 8, the

stiffness matrix of the shell element can be assembled. If all the elements

of the shell are of the same size, then the element stiffness matrix is



¥ ~BEAM {
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BEAM PROPERTIES FOR PLANE STRESS:

A = A~ h IT'= (1—31:)4&;_2.11
1 2(1-+% L 20-4%) 12
A _ (Cz_vZL. h Il = (1'3v2\?c.-h_
2 2¢(-2% 2 2(1-5 {2
__vriL -
2= e N 1,= 0O

where A = cross—sectional area of beam

I' = beam moment of inertia {.‘or in—pla.n.e
bending of element

NOTE: Beam pmoperﬁes for ouf—o{‘—plan.e bending are
some as those on Fi3.3.

FIG.8 - SHELL ELEMENT FRAMEWORK MODEL
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identical for all of the shell elements. However, for a cylindrical shell that
is not circular, it may be convenient to vary the element length in the y
direction for different elements. The node displacements are related to the

node forces for an element i by

(s =[5 ] e
where l Si ] is the vector of the 24 generalized internal forces, ex-
pressed in the element coordinates xyz, acting at the
nodes of shell element i. (See Fig. 5.)
[ki] is the 24 x 24 stiffness matrix of shell element i discussed
in the Appendix.
[ u, } is the vector of the 24 displacements of the nodes of shell
element i, expressed in the element coordinates xyz. (See
Fig. 5.)
Node displacement in system coordinates are transformed into those in

element coordinates by

()= (o] () an
where { q, } is the vector of the 24 displacements of the nodes of shell
element i, expressed in system coordinates.
[Ci] is the 24 x 24 geometric transformation matrix for shell
element i, given in the Appendix.
From Eqgs. (26) and (27), the node forces of element i resulting from node

displacements | q_1} are

(S} =[%] [&]]«) (28)




The equilibrium of generalized forces at nodes requires that
n
(=)=2, [a]" {s)
=1L * !

where the summation extends over all the n elements of the shell, and
where ‘ Rl is the vector of resultant node forces, to be explained sub-

sequently. Substituting Eq. (28) into (29) yields
n
(%)= [e]"T8) [¢] (4]
i=

This equation, which relates the node displacements in system coor-

dinates to the resultant node forces, can be rewritten as

NEBH
where [ k | = ZI [ ]T [%][C] s the stifiness matrix

for the entire shell structure. It is assembled by first
transforming each of the element stiffness matrices as
indicated, and then placing the elements of each of these
transformed matrices in the appropriate rows and col-

umns of [ k] , adding the overlapping terms.
{»R' » the vector of resultant node forces, consists of the following:

1. - External forces I Q ]n applied at the nodes, expressed in system

coordinates XYZ.

35

(29)

(30)

1)
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2. Equivalent node forces [ Q ]e expressed in system coordinates,
H

from forces acting on the shell away from the nodes:
5 T
IQ] = [c] |F} (32)
e i=1 1 1

where l Fil is the vector of the generalized equivalent node
forces associated with shell element i. These will be derived
in a subsequent section.

3. Inertia forces ' R ] in associated with the inertia of the
structure. These forces, expressed in system coordinates,
are found as follows. Node accelerations [ q1| in system
coordinates transform into node accelerations { iiil in element

coordinates by

() -[e (4 @
From D'Alembert's principle, the inertia forces associated

with the nodes of shell element i are

[ (9] () .
where [mi]is the 24x24 shell element mass matrix. The elements

of this matrix, along with the assumptions used for its

derivation, are given in the Appendix.

Transforming the forces of expression (34) into system coordinates and

summing over all the n elements of the shell structure yields




37

(%=- 5 ()7 (=) (<] (4] -

(R[] (4] o0

entire shell structure, assembled in the same manner

as the structure stiffness matrix[ k ] . (See Appendix.)

Substituting the components of ' R} into Eq. (31) yields

(=] {a}+[x] {a}- (e} @
where {Q } = I Q }n +{ Q }e is a vector which varies with time in

general.

Eq. (37) is completely analogous to Eq. (8) obtained for the plate.
Thus, the number of equations represented by expression (37) is equal to
the number of degrees of freedom of the finite element shell structure.
However, in contrast to Eq. (8), Eq. (37) is associated only with the sys-
tem coordinates. Boundary conditions or other restraints for the shell
structure are introduced in the same manner as for plates.

The method of solution used for Eq. (37) to find node displacements,
which appears in a later section, is the same as that for Eq. (8). Once
the node displacements are knows for any instant of time, the concentrated

forces and moments acting at the nodes of element i can be found from
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Eq. (9), where ‘ui' is obtained from Eq. (27). Alternately, the plate
forces and moments can be found from the node deflections using the
equations from elasticity.
4. Forcing Functions
a. General

It is recalled that before a framework was substituted for the
cylindrical shell, each of a finite number of curved small shell elements
had to be replaced by a small flat plate segment. Since in the following
development it is necessary to know the components of velocity of the
moving load-mass along such a flat plate element, it can be assumed that
the position of a load, which at any instant of time acts at an arbitrary
point of a curved shell element, is at a point on a flat plate element which
is on the line from the point of application on the curved shell element
normal to the corresponding flat plate element. Although there will be
apparent abrupt changes in the direction of motion of the lcad as it moves
from one flat element to the next, these abrupt changes may be discarded
since they do not exist on the actual curved shell. Since the X-coordinate
of the system coordinates is always parallel to the x-coordinate of the
element coordinates, the corresponding components of velocity of the
moving load are equal on a curved shell element and on its corresponding
flat plate element. This, however, is not the case with the Y and y com-
ponents of velocity of the moving load, referring to system and element

coordinates, respectively. Obviously, if a sufficiently large number of
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finite elements is used in the Y-direction so that the arc length of the
curved shell element is approximately equal to the length in y-direction

of the flat plate element, then the corresponding components of velocity
may be considered to be equal. To obtain the y-component of velocity
more exactly, however, the Y-component of velocity should be multiplied
by the ratio of the length of the flat element in y-direction to the arc

length of the corresponding curved shell element. The theoretically exact
relation between these velocity components could, of couri’e, be calculated
from geometry, even for a non-circular cylindrical shell, but for practical
purposes this is not justified.

As mentioned earlier, the subsequent development is for loads and
masses moving with a constant speed along the cylindrical shell.

The derivation of the equivalent node forces for the cylindrical
shell requires the assumption of certain displacement functions for a flat
plate element. Such functions are assumed since no exact functions are
available, In this derivation, the moving loads will be assumed to consist
of forces but not of moments.

b. Moving Forces

As in the analysis of plates, also in the analysis of cylindrical
shells by the finite element technique it is necessary that all forces act
at the nodes. Thus for a moving load, which may act at an arbitrary
point of the shell at a given instant of time, it is necessary to find a set
of equivalent node forces at that instant of time that would cause the same

displacements in the structure.
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In the subsequent development it will be assumed that the load or
mass, as it moves along the shell, remains in contact with the shell at

all times.

Consider a moving force P at an instant of time t = tl, acting in
an arbitrary direction, when it is located on a flat element at x = a and
y = b of element coordinates. The force P is divided into its compo-
nents Px, Py and Pz. The first two components cause plane stress in
the element, while Pz causes out-of-plane bending of the element. The
two cases are considered separately.

The equivalent node forces from PZ are the same as those obtained
for a plate element in the analysis of plates, given by Eq. (13). Only
the subscripts i have to be modified in that equation, in order that the
numbering of the components of the equivalent node forces corresponds
to that indicated in Fig. 5 for a flat shell element. Therefore in the
subsequent analysis only components Px and Py need to be considered.

In the analysis by a finite element approach, after the structure
stiffness matrix has been assembled, the procedure is identical re-
gardless of whethef a framework analogy or some continuous finite element
technique is being used. This justifies the derivation of equivalent node
forces independently from the particular finite element technique adopted
for the rest of the analysis, without any inconsistencies resulting.

With the Yettram and Husain25 framework model for plane stress,

twelve possible node forces are associated with any one element. How-

ever, with some other continuous finite element techniques for plane stress,
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only eight such forces would be considered. But in the analysis of an
"‘angular'' shell structure, corresponding to each of the above alternatives
there would still be the same number of equilibrium equations in the
system coordinates. Therefore, in the following derivation, the calculation
of only eight equivalent node forces for the plane stress condition implies
no inconsistencies.

Consider Px, the x-component of the moving force P, at an instant
of time t=t1 located on an element at x=a and y=b. Applying virtual dis-
placements 6ui (i=1,2,7,8,13, 14, 19,20) at this instant of time at the nodes

of this element, the translational displacement of the point (a,b) in the

x-direction, due to virtual displacements aui is assumed to be
b

we Gwt)| = 2 B duly) (38)
1

X=a X=a
y=b y=

where i=1,7,13,19
Bi(x, y) is the assumed displacement of the element in
x~-direction due to a node displacement u, = 1 and
u; = 0 for j #1i, when i=1,7,13,19. (See Appendix.)
éui(tl) is the i-th virtual node displacement of the element,
in orientation and sign convention identical to u,

shown in Fig. 5.

As in the plate analysis ( See Egs. (10) to (13).), this leads to the

expression for the i-th equivalent node force




F, = P_B, (x,y) (i=1,7, 13, 19)

X=a
y=b

Similarly, from the y-component of the moving force P

Fi = Py Bi x,y) (i=2, 8, 14, 20)

X=a
y=b

In this equation Bi (x,y) is defined as in Eq. (38) except that here it
refers to the assumed displacement in the y-direction, for
i=2,8,14,20. (See Appendix.)

Although it appears from the foregoing development that four
equivalent node forces for each of Px and Py are determined independ-
ently, this is seen not to be the case when reference is made to the
Appendix. It is seen from the Appendix that the displacement functions
Bi (x,y) for i=1,7, 13, 19 are related to B, (x,y) for i=2, 8, 14, 20 by
some common constants. Therefore, the equivalent node forces due to
Px and those due to Py are in fact related, and can not be determined
independently.

The comments made in the plate analysis for stationary time-
varying ioads and for multiple moving loads also hold here.

c. Moving Masses

As in the plate analysis, the interaction force between the shell
element and the mass is evaluated in order to obtain a set of equivalent
node forces resulting from a moving mass. Again, the rotary inertia

effect of the mass is neglected.

42

(39)

(40)
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The interaction force between the shell element and the mass can
be divided into components along the x, y, and z directions. The z-compo-
nent of the interaction force has already been determined in the develop-
ment of the plate analysis. Thus, the equivalent node forces due to this
force are given by Eqs. (20) and (21). However, the subscripts i and j
have to be modified in that expression so that their numbering corresponds
to the numbering of node forces and displacements indicated on Fig. 5.

The determination of the x and y components of the interaction
force is similar to that for the z-component, except that here the displace-
ment function Bi(x, y) isused. This function and its appropriate sub-
scripts are those used in the previous section when equivalent node forces
due to a moving load were determined. Thus it suffices but to write down
the expression, analogous to Eq. (20), for the equivalent node forces as-
sociated with the x and y components of the interaction force. That is,
for a mass M at time t=t1 located at x=a and y=b of an element,

2

2
F.=-M) B, B, .+V_B., u.
i z iV By, * Vy By
j

+2 B. .+2V.B. u. +2V B. u.
vay i, xy"i X j,X7] Y i,y i

+ Bjiij) (41)

X=a
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where i and j each = 1,2,7, 8, 13,14, 19,20
B, is defined in Eq.(38) and given in the Appendix.

Bj is defined as Bi with j substituted for i.
3

Eqs. (41) and (21) can be together written as

= - * * 1
F, Z(k u; +d, u]+m1] J) (42)
X=a
y=b
t=t1

where i and j each take on all values from

1 to 24 except 6, 12, 18, 24.

and where, for i and j each = 3,4, 5,9, 10, 11, 15, 16, 17, 21, 22, 23,

2 2
kX = M A, A, A, 2 A. 422
1] 1 (VX 1y XX VY 1, Yy ¥ VXVY 1s xy) (422)
X=a
| y=b
* = . . A, 4
dl] 2MA1(VXAJ,X +Vy ],y) (42b)
X=a
y=b
m* = MA.A. (42¢)
1] 1]
X=a
y=b
and where, for i and j each=1,2,7,8, 13, 14, 19, 20,
k. =MB, (V2B __ +VZB, _+2V.V B, ) (424)
1) 1 X J,XX y 1LYy X'y 1LXy

il

T ®

< X
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%*
d.. =2 MB. (V.B. +V B. 42
ij i (VxBj x VyBi,y) (42e)
X=a
y:
*
m.. = MB.B. (421)
ij i
X=a
y=b

Egs. (42a,b,c) are associated with out-of-plane bending of the element,
and Eqs. (42d, e, f) are associated with plane stress condition of the

* *
element. All k.. d..
ij, 1ij

b4 ?

and mi*j not specifically defined by Eqs. (42a)
through (42f) are zero.

Eq. (42) was derived for a single moving mass on an element.
For several moving masses on the same element, the equivalent node
forces are obtained by adding those caused by each mass, using Eq.
(42). Thus the vector of all equivalent node forces, caused by moving

masses, that are associated with element r is defincd by

U ] (e (o] (&) ome] () 3)

For convenience, Eq. (43) is written with the vectors each having 24
rows, although the rows 6,12, 18 and 24 are zero. Similar statement

holds for the 24x24 matrices in this equation. The 24x24 matrices

%k * % . * %
[ kr] , [dr ] and [mr] are assembled by placing each kij, dij, and

*

mij in the i-th row and j-th column of the respective matrix.




Transforming Eq. (43) to system coordinates, and adding the
contributions from all the moving masses on all the elements of the

structure yields

fee=[¥] faf« [ {a ) [=7] ]

n

were fa,= 5 [6]7 [
[¥] = 3 (a7 [%] [a]
[]= 3 [a]7[4] 4]
SIRMCIEITY

where the summation extends to n, the number of elements used for
the shell. Although for only a few moving masses on the shell struc-
ture most of the rows and columns of the matrices (44b, ¢, d) would
consist of zeros, for reasons that will become apparent later, it is
more convenient to arrange the matrices as shown.

Adding Eq. (44) to the node forces in Eq. (37) yields the fol-
lowing equations of motion for the finite element shell structure sub-

jected to moving masses

46

(44)

(44a)

(44b)

(44c)

(444d)

(45)



where [M] = [m"] + [m ]
[p]-{d"]
[x]-[] +[x]

and where ! Q } includes the node forces from all forces on the shell,

static and moving, except those caused by the moving masses.

Eqgs. (45) are analogous to the corresponding Eqs. (24) de-
rived for the plate. Thus the remarks made in reference to Eqgs.
(24) in regard to a plate also hold here in regard to the cylindrical
shell. Therefore, rather than solve Eqs. (24) and (45) separately
for the plate and the shell, respectively, these sets of equations will
be treated together in the subsequent sections.

C. Solution of Equations of Motion

1. General Case

For the solution of equations of motion in the general case it
is assumed that all the inertia effects of the structure, including those
of rotary inertia, are included. As mentioned previously, since the
equations of motion for the plate structure are analogous to the
equations of motion for the cylindrical shell structure, the two cases
will be treated together. Henceforth reference will be made only to
the equations of motion for the plate structure. However, all the dis-
cussions, the development and the solutions are equally valid for the

equations of motion for the shell structure when q is substituted for u.
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(45a)
(45b)

(45¢)



In the equations of motion (8) the vector | Q , may vary arbitrarily
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with time. Moreover, when moving masses are considered, the coefficient

matrices in the equations of motion may be time-dependent, as seen from
Eq. (24). Hence only numerical solutions to the equations of motion are
generally possible. Of the various numerical techniques available,

Allik1 has studied the linear acceleration method, Runga-Kutta method
due to Gill, Milne's 4-th order method and Houbolt's method. Of these
methods, Allilw:1 has found the linear acceleration method to be the most
efficient one in computer time. Hence this method, as used by Allikl,
will be adopted here. It should be noted, however, that other methods
are applicable here as well.

The accuracy of the solution of an initial value problem by a step-
by-step numerical integration method depends on the size of the time in-
terval h chosen. Since it is not possible in general to determine the
required size of the time increment h beforehand, a solution for a given
h can be considered acceptable when it agrees sufficiently well with a
solution obtained for a smaller time increment.

In the linear acceleration method the accelerations of the nodes of
the plate are assumed to vary linearly for a small time increment h.

Hence the acceleration in the interval between times nand n + 1 is

given by

. . 1 ,..
us=u +y (un

41" Uy -t (46)
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The expressions for the displacements and velocities used in the linear
acceleration method, which have been derived previously from the as-

sumption of Eq. (46)38, are as follows
{u}ml:[u’n+h{a}n+-‘l;[ﬁ|n+-‘§{ﬁ]n+l (47)
‘ﬁ]ml:lﬁln+%’ﬁln+%lﬁ}n+l (48)
a. Problem with Moving Forces

The equations of motion (8) for the end of a time interval can be

written as

Lo = [ ] L en # { @ e (49)
Substituting for {u | . from Eq. (47) and rearranging yields
([m) =05 ) {3 o= (2o
L] ([oharn )5 L6),) -

which can be written as

[e] (&)= (] (51)

-where[E]:[m]+2—2[k] (51a)
{ G ] = right side of Eq. (50) (51b)

Since [E ] depends only on the properties of the discrete element
plate, the node accelerations at the end of the time interval can be

calculated from Eq. (51) as
[ o= (=] ) g




Hence the displacements and the velocities at the end of the time interval
can be calculated from Eqs. (47) and (48). It should be noted that the
vector [ G , in Eq. (52) depends on the displacements, velocities, and
accelerations at the beginning of the time increment. Therefore ‘ G ‘ must
be evaluated for each time interval.

The linear acceleration method is self-starting. With the initial
conditions of zero displacements and zero velocities at each node, the
initial accelerations are found from Eq. (49).

It should be noted that since the equations of motion (8) are valid
for moving loads as well as for stationary time-varying loads, the fore-
going solution also holds for the latter case.

b. Problem with Moving Masses

The equations of motion (24) for the case with moving masses can

be solved as follows. Equation (24) for the end of the time interval n+1

can be written as

o0

P et [P] n [K] [0 fa = Qe 69

Substituting for lu ln +1 2nd { u ln 41 from Egs. (47) and (48) gives

(1] +500] 20T ) {5 mon= [ @ - [2] ([ + (5).)

-[K](’uln+hlf1}n+%3|ii]n> (54)

which can be written as

L2 ] {i}na=lo] ©5)




where[E]=[M]+%[D] +%2—[K] (55a)
{ G ] = Right hand side of Eq. (54) (55b)

In Eq. (55) [E ] as well as ‘ G ’ must be re-evaluated for each time
interval. At the end of the time increment, the node accelerations, dis-
placements, and velocities can be evaluated from Eqs. (55), (47), and
(48), respectively.
2. Case when Rotary Inertia Neglected
a. Problem with Moving Forces

As previously mentioned, when the rotary inertia of the structure
is neglected, the number of equations of motion for a plate subjected to
moving loads or to stationary time-varying loads, as given by Egs. (8),
may be reduced. In such a case, the equations of motion (8) can be

partitioned as

[m]yy (i} + | (k] [x]y

[k]ag [k]as

where { u } 1 is the vector of node deflections

=

i —— P,
et
N—— ————
[\
]
p—— o~ —

[y

}2 (56)

associated with inertia forces.
{u }2 is the vector of node rotations
not associated with inertia forces.

From Eq. (56) it follows that

[m]yq {8}y + [k ]gg {udy+ [k]gp {v)y= {Q); (57)
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and

[z foy + [k]gy {u)y= {0 s

From Eq. (58) B .
wly=- [k]gp [k]gy {uly+ [k]y (@),

Substituting Eq. (59) for {u }2 in Eq. (57) yields the equations of

motion in terms of { u }1 only:

[m]3y (idy e (] fuly=faly - [x]y [k]5 (@),
where [K ] = [k]1-[ %]y [k];z [k],,

Using the linear acceleration method of numerical integration on

Eq. (60) yields

{8 )= [E]

. (°° L34 . .
where iu1} n+l = { u }1 at the end of the time increment considered.

[E]=[m ]11 [ K ], where [ K ]is defined by Eq. (60a).

and where

{6} =1{Q) - [x]gs [k];; {9 }na

2

L] (fugd e (g, 5450 ,)

In the latter expression the subscripts of Q, u and its derivatives have

been moved inside the brackets only for clarity.
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(58)

(59)

(60)

(60a)

(61)
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Once the node accelerations at the end of a time increment have
been determined by Eq. (61), the displacements and velocities for the
end of the time interval can be found from expressions analogous to
Egs. (47) and (48), and from Eq. (53).

b. Problem with Moving Masses

The number of equations of motion for a plate subjected to moving
masses, as given by Eqgs. (24), may be reduced when the rotary inertia
of the structure is neglected. However, in this case, the reduced number
of equations will not be equal to the number of degrees of freedom in
deflection for the structure. The reduced number of equations, as shown
subsequently, changes in general whenever a moving mass crosses from

one element to another.

The equations of motion (24) can be written as

Lo U e [ ] {a e L] (o)« [ (o)« [T { o) = () oo
As previously mentioned, the number of equations constituting the set of
equations (62) is equal to the number of degrees of freedom of the plate
structure. Define

Ns = number of degrees of freedom of the structure.

D s = number of degrees of freedon of the structure in deflection.
and, for a given instant of time, define

MS = number of equivalent node moments from all of the moving masses

at the instant of time considered.




When the rotary inertia effects of the structure are neglected, at any given

instant of time, Eq. (62) can be partitioned as

[m]u{ [m ]11[“‘ 12 “1(* ]11[d 125 }1/
[m ]21[“‘ Ja ?“ 25 [d*]zl[ ]222“} S
+{le]; 4[], Ao 8 [Ty [y, ;{“}1(=S{Q}1{
[T Tl Va8 [T 77 pofle )l

where y u t, is the vector of D node translational displacements
1 s

(63)

associated with inertia forces and MS node rotations
for which there correspond equivalent node moments
from moving masses. The vector consists of

(D_+ M ) rows.
S S

{u }2 is the vector of those node rotations for which no
corresponding equivalent node moments exist from
moving masses. This vector consists of

(N -D - M) rows.
s s s

and where other vectors and submatrices are defined in accordance with

{u}; and {u},. From this definition it follows that

[m*] mn =[d*] — [k*] — [0] except when m=n=1 (64)
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With Eq. (64), Eq. (63) yields

95

(CIPR P LA TR r R TS A (1 P 1 P TR

+[k]12 {u}z = {Q}l
and

[k]z1 {u}1+[k]2z {u }2 = {Q}z

From the latter equation

{u}2= [k];; <{Q}2'[k]21{“}1>

Substitution of Eq. (67) into Eq. (65) gives

[M]n {ﬁ}1+[D]11{ﬁ}1+ [K']n{“h: {Q'}l

where :M]11= [m*] 117" [m]ll
D ]11= [a” ]11
(K gy =[]y + [y - [k]m[k];;[k]m

(@)=l )~ [ k)5 @),

Thus the set of equations of motion (24) has been reduced in number
to (DS + MS) , as given by Eq. (68), where M, may vary with time.

Consider first a time interval between times tn and tn +1

such that none of the moving masses on the structure crosses from one

element to another during this interval. Hence, for such an interval,

(65)

(66)

(67)

(68)

(68a)
(68b)

(68c)

(68d)
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the solution of Eqs. (68) proceeds in the same manner as that for Egs.

(24). Thus it follows that
[e] {3} ,,={c) (69)
2
where [E] = [M]11+% [D]11+%[K']11 (69a)

{G }= {Q'l}m»l-[D]ll( {ﬁl}n+% {ﬁl}n>

LYy (Hughy en figd, o)) (65D)

In Eqs. (69), (69a) and (69b), the subscripts of Q', u and its
derivatives have been moved inside the brackets only for clarity.
The node accelerations at the end of the time interval considered
are found from Eq. (69), and the corresponding displacements and
velocities are determined as in previous cases.

Consider next a time interval between times tn and tn+1 such
that one or more of the moving masses on the structure does cross
from one element to another during this interval. For such a time in-
terval the numerical integration technique must proceed somewhat
differently from the previous case because { u }1 with its derivatives
at time tn and {u }1 with its derivatives at time tn+1 do not refer to
the same degrees of freedom. However, this poses no difficulties
since the displacements, velocities, and accelerations corresponding to
all possible degrees of freedom can be determined for time tn the

]

beginning of the time interval, before proceeding to solve for node
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accelerations at time tn +1. Knowing all the node displacements, along
with the node velocities {u }1 and the node accelerations { u }1 at time
tn, the remaining node velocities and accelerations at time tn can be
found by differentiating Eq. (67). It should be noted that since the

equivalent node forces have been assumed to remain constant over any one

time interval,

{Ql, =10} (70)

and

(Qln=1 <{Q2}n+1—{Q2}n> (71)

Since all the node displacements, velocities and accelerations are thus
determined for time tn, the right side of Eq. (69b) is known. Hence the
numerical integration can proceed to time tn +1 to find the node accelera-
tions by Eq. (69), and the corresponding displacements and velocities
as previously described.

When the reduced number of equations represented by expression
(68) is solved by the linear acceleration method, matrix [ E] must be
inverted at each time interval. Moreover, the structure stiffness matrix
fnust be partitioned anew for each time interval during which a moving
mass crosses over from one element to another. For such a time interval

the matrix [k]z2 as well as the matrix [ E ] must be inverted.
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NUMERICAL RESULTS

Numerical problems have been solved for plates and cylindrical
shells subjected to dynamic loadings in order to demonstrate the feasibility
of the analytical procedure. It was not intended to make a general study
of the effects of the various parameters on the behavior of plates and
cylindrical shells. All numerical results presented have been obtained
through use of the CDC 6600 digital computer located at New York
University.

A. Plate

1. General

Numerical results are presented here for square and rectangular
plates, either with simply supported or clamped boundaries. The loads
considered include impact, moving force, and moving mass loads. Also,
two problems have been solved for continuous plates with a moving load.

In all cases, the plate material has been assumed to weigh 495 1lbs. /cu. ft.,
and to have a modulus of elasticity of 30,000 ksi and a Poisson's ratio of

0. 30. The weight of the plate has been neglected except for calculation of
j:he mass parameters.

Because of the availability of only a very limited number of numerical
results for static plate solutions using the Yettram and Husain18 framework
analogy, the results of some studies are presented in what follows to illus-
trate the accuracy of the use of a finite element approach to obtain static

plate deflections. A simply supported 60.0'' square plé.te of 0.25" thickness
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was subjected to a 1. OK central load. In Table 1, deflections obtained by
Navier39 solution are compared with those obtained by using Yettram and
Husa.in18 framework analogy with various grid sizes. Deflections are
compared for the center of the plate, and for a point equidistant from the
center and the corner of the plate, referred to as the quarter point. In
Table 2, similar comparisons are made for a clamped plate of the same
dimensions and with the same load. Here, however, the comparison is
made with Timoshenko's solution by superposition as extended by Young40
From the comparison in Table 1, it is seen that Yettram and Husain's
method with a 6x6 grid yields a center deflection for the simply supported
plate which differs only 1. 1% from the Navier solution. For the clamped
plate, the co;‘responding deviation from Timoshenko-Young solution is
even less.

It will be seen subsequently that also under dynamic loadings, in
general, the improvement in the accuracy obtained for plate deflections is
small as the grid size is made finer, thereby justifying the use of a rela-
tively coarse grid. However, it should be noted that in case the plate forces
and stresses are to be calculated, a relatively finer grid may have to be

"adopted.

In all subsequent problems for plates subjected to impact loads or
to moving forces, as well as in the calculation of natural frequencies, the
rotary inertia effects of the structure have been neglected. In calculating

the response of plates to moving masses, however, these effects have been




60

TABLE 1

Deflections of a Simply Supported Plate (in.)

Deflection at Deflection at
Center Quarter Point
6x6 Grid 0. 9750 -
8x8 Grid 0. 9741 0.4004
10x10 Grid 0.9737 -
12x12 Grid 0. 9735 0. 4000
14x14 Grid 0. 9733 -
Navier 0. 9644 0. 3998
TABLE 2

Deflections of a Clamped Plate (in.)

Deilection at Deflection at
Center Quarter Point
6x6 Grid 0.4738 -
8x8 Grid 0.4721 0.1033
10x10 Grid 0.4715 -
12x12 Grid 0.4712 0. 1029
14x14 Grid 0.4711 -

Timoshenko-Young 0.469 0.103
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included. For all problems, the mass matrix has been calculated by the
direct lumping procedure explained in the Appendix.
2. Impact Loads

The simply supported plate shown on Fig. 9 was subjected at its center
to the impact load indicated on that figure, applied normal to the plate. At
first, a 6x6 grid was used, resulting in a total of 36 square elements for the
plate. For such a finite element structure, the fundamental natural period
is 0. 0120 seconds, and the smallest natural period is 0. 833x10-3 seconds.
The response curves for the center deflection, along with the static deflec-
tion curve, are shown on Fig. 9 for two time intervals h. The time interval
of 0. 25x10-3 seconds corresponds to 0. 30 Ts, where TS is the shortest
natural period, while the time interval of 0. 10x10-2 seconds corresponds
to 1.2 Ts. The response curve for a time interval of 0. 10x10-3 seconds

is almost identical to the one for 0. 25x10_3 seconds on Fig. 9. Because

of graphical difficulties, this curve is not shown on the figure., The re-

=

sponse curves for the deflections at all other nodes indicated a smaller
variation with the three time intervals used than did the center node.

For the same plate and loading, on Fig. 10 is shown a comparison of
the response curves for the center deflection with two grid sizes, with a
time interval of 0. 25}:10-3 seconds being used for both curves. It is seen
that for practical purposes, the maximum deflections for a 12x12 grid are
the same as those for a 6x6 grid, although the two curves are out of phase

at times.
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3. Moving Forces

The response of a square and a rectangular plate subjected to one
or more loads, moving with various velocities and along different paths on
the plate, has been investigated. Both simply supported and clamped bound-
aries have been used for these plates, The dimensions of the two plates are
shown on Fig. 11. Unless otherwise noted, a 6x6 grid was used in the
analysis of each of these plates, as indicated on Fig. 11, The smallest and
largest natural periods for the resulting finite element structures are given
on the figure.

The response curves for node deflections of the plates of Fig. 11,
subjected to various moving loads, are shown on Figs. 12 through 21. The
loading conditions, as well as the response curve for the deflection of the
center, i.e. node 25 (See Fig. 11.), are presented on the figures. For
one case, an additional response curve for the deflection of node 9 (See
Fig. 11,) is given. In each case, a static deflection curve is shown for com-
parison, It is of interest to note that the static deflection curve shown on
Fig. 13, obtained by the finite element solution, coincides with the corre-
sponding curve obtained by the more exact Navier solution39.

Fig. 12 shows the response curves of the deflection of node 25 for
a single load moving along the centerline of the simply supported square

plate at velocities of 200, 400 and 600 in. /sec. For velocity of 600 in, /sec.,
3 3

the problem was solved by using time intervals, h, of 0.25x10" ,

, 0.50x10"
and 1. 00x10™3 seconds. For all of these time intervals, the response

curves coincide and are thus shown as a single curve on Fig. 12. Since a
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FIG.11 - A SQUARE AND A RECTANGULAR PLATE
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time interval of 1. 00x10—3 seconds yields the same results as the smaller
time interval, it may be concluded that a time interval even larger than
this could be used to obtain approximations to the response curve in
question. In subsequent problems, rather than find empirically the maxi-
mum time interval permissible for sufficient accuracy in each case, a
time interval is used that is sufficiently small to avoid divergence. Thus
in subsequent problems in this section, for convenience a time interval of
0. 50x10-3 seconds is adopted for the simply supported plates, and

0. 25x10_3 seconds is used for the stiffer, clamped plates.

From Fig. 12 it is seen that the maximum dynamic deflection occurs

for the highest velocity, 600 in./sec. This is also true for node 9, for
which the response curves are shown on Fig. 13, as well as for all other
nodes, for which the response curves are not presented here. Inspection
of Figs. 14, 18 and 19 indicates that in all cases, the maximum dynamic
deflection occurs when the load is moving with the highest velocity. How-
ever, it would not be correct to conclude that the maximum dynamic de-
flection is always greater with higher velocities of the moving load, al-
though this is usually the case. For example, on Fig. 18, the maximum
dynamic deflection for velocity of 200 in. /sec. is slightly greater than for
velocity of 400 in. /sec. However, from the response curves of Figs. 12,
13, 14, 18 and 19, it is seen that the amplitudes of the oscillations of a
dynamic curve about the static curve, measured from the latter curve, are

in general greater for greater velocities for a particular plate.
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It is of interest to note from Fig. 12 that, for velocity of 200 in. /
sec., after the load leaves the plate the center node keeps vibrating at
approximately the same frequency with which it vibrated about the static
position when the load was on the plate.

Fig. 14 shows the response curves for the center deflection of the
square plate with clamped boundaries and with the loadings used for the
simply supported plate of Fig. 12. Comparison of the response curves of
Figs. 12 and 14 indicates that for a given velocity the dynamic deflections
deviate from the static deflections much less for the stiffer structure,
i.e., for the fixed plate.

The fixed plate shown on Fig. 14 was also analysed for the case of
a single load moving at velocity of 200 in. /sec., along the path indicated
on the figure, and using a 12x12 grid. The response curve for the deflec-
tion of the center node of the plate in this case coincides identically with
the case when a 6x6 grid was used. Thus the response curve for velocity
of 200 in. /sec. shown on Fig. 14 is identical for the two grid sizes used,
justifying the validity of the coarser grid.

On Fig. 15 is shown the response curve for the center deflection of
the simply supported square plate subjected to five loads of 0. 25K each
moving along the centerline of the plate at equal velocities at 400 in. /sec.,
as shown on the figure. It is seen from this figure that the maximum dy-
namic deflection occurs shortly after the center load has crossed the center

of the plate. It is also interesting to note from this figure that the difference

7
|
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between the dynamic and static deflections are appreciably greater when the
loads are leaving the plate than they are when the loads are entering the
plate. That is, the greatest differences in these curves occur at times
after the maximum static deflection has been attained. This does not
happen in the case of a single load of 1. 0K moving at the same velocity, as
seen from Fig. 12.

On Figs. 16 and 17 are shown the response curves for the center
deflection of a simply supported and a clamped rectangular plate, sub-
jected to a single 1. 0K load moving along the centerline x = 45'" at velocities
of 200 and 400 in. /sec., respectively. Comparing the response curves
for velocity of 200 in. /sec. for the simply supported rectangular plate,
as shown on Fig. 16, and for the same velocity for the square plate, as
shown on Fig. 12, it is seen that the ratio of the maximum dynamic deflec-
tion to the maximum static deflection is almost identical in each case.
This, however, is not the case for a velocity of 400 in. /sec. for the corre-
sponding clamped plate, as seen from Figs. 14 and 17.

It is of interest to note from Figs. 12 through 17 that the ratio of
the average period of oscillation of the dynamic curve about the static curve
to the fundamental period of the particular finite element plate structure
does not vary greatly. This is not apparent at first glance from the re-
sponse curves with the coordinate axes used. However, if the abscissa-
axis is converted to time, it is seen that the ratio in question, for each of

the curves on Figs. 12 through 17, is between approximately 6.2 and 6. 9.
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For a load moving across a plate in an arbitrary direction, however, this
is not the case. For example, from the response curves on Figs. 18 and
19, for a load moving diagonally across the simply supported and clamped
plates, respectively, the ratio referred to above may be seen to vary
greatly for different velocities.

Comparing the response curves of Figs. 18 and 19 with the ones
of Figs. 12 and 14, it is seen that for any particular velocity the maximum
dynamic deflection is smaller for the case when the load moves diagonally
across a plate than it is when the load crosses the plate along its center-
lilne.}

On Figs. 20 and 21 are shown the response curves for the center
deflections of simply supported and clamped plates, respectively, sub-
jected each to five loads traversing the plates at an arbitrary direction.

In order to draw any general conclusions for plates subjected to an ar-
bitrary number of loads moving along an arbitrary direction, as for the
cases shown on Figs. 20 and 21, additional numerical studies would have
to be méde.

To illustrate the flexibility of the method presented in this report,
two continuous plates, as shown on Figs. 22 and 24, are analyzed, each
for a single load moving at a velocity of 400 in. /sec. along the centerline
of the plate across the two spans. By considering symmetry, the 12x6
grid used for the half-plate of Fig. 22 results in 176 degrees of freedom for
the half of the structure considered. The central processing time used by
the computer for this problem was 265.5 seconds. Using similarly a 12x3

grid for the half-plate of Fig. 24 results in 83 degrees of freedom for the
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half of that structure. In this case the central processing time used was
72.1 seconds. The computer times used by these two problems are by far
the greatest for any of the problems considered thus far.

On Figs. 22 through 25 are presented the response curves for the
deflection of the center node of each span of the two continuous plates. It
can be seen from the response curves on Figs. 22 and 23 that the maximum
dynamic deflection is greater for the center of the left-hand span than for
the center of the other span, while, onthe other hand, the reverse is true
for the continuous plate of Fig. 24, as seen from the response curves on
Figs. 24 and 25. This is perhaps explained by the fact that in the first
case the vibration induced is of such frequency that the maximum dynamic
deflection in the left-hand span occurs at almost the same instant as does
the maximum static displacement in that span, while for the other continuous
plate, as seen from Fig. 25, the frequency of vibration induced is such that
the maximum dynamic and static deflections occur at almost the same in-
stant for the right-hand span.

4. Moving Masses

The numerical results presented in this section are for a clamped
square plate subjected to a single load-mass moving along the centerline
of the plate, as shown on Fig. 26, and for a clamped rectangular plate
subjected to three load-masses traversing the plate at an angle chosen
arbitrarily, as shown on Fig. 27. For each plate, a 6x6 grid with a time

interval of integration h of 0. 50x10-3 sec. was used, unless otherwise
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mentioned. The masses of the moving loads used in the solution were those
due to a gravitational acceleration of 32.2 ft. /sec. 2.

For the square plate, on Fig. 26 are shown the response curves for
the center node deflection for velocities of 100, 200, and 400 in. /sec. for
the load-mass. The static deflection curve for the load is also shown. For
the case of the load-mass moving with a velocity of 400 in. /sec. , atime
interval h of 0.25x10"° sec. , as well as one of 0. 50x10"> sec. was used.
The response curves for deflection were found to coincide for these two
time intervals. Thus the same response curve shown on Fig. 26 for velocity
of 400 in. /sec. was obtained when each of these time intervals was used.
For all other response curves referred to in this section, only a time in-
terval of 0. 50x10°3 sec. has been used.

Upon comparison of the response curves for velocities of 200 and
400 in. /sec. shown on Fig. 26 with the response curves for the same
velocities on Fig. 14, it is seen that the inclusion of the inertia of the mov-
ing load has a considerable effect on the solution. It is seen that the maxi-
mum dynamic deflection is greater, for each of the two velocities, when
the effects of the mass of the load are included in the analysis.

For the solution of the square plate of Fig. 26, symmetry was used
for each of the cases considered. With a time interval of 0. 50x10™° sec-
onds, the central processing times used by the computer for the velocities
of 100, 200 and 400 in. /sec. were 291.2, 148.8, and 80. 3 seconds, re-
spectively. When a time interval of 0. 25x10'3 seconds was used for the

velocity of 400 in. /sec., the time required was 153.0 seconds.
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On Fig. 27 is shown a clamped rectangular plate subjected to three

moving loads of 0.5 Kips each, with their masses included. The path of
the moving load-masses indicated on the figure was chosen arbitrarily.
The response curve for the center node déﬂection, along with the static
deflection curve, has been plotted on this figure for the load-mass moving
at 100 in. /sec. For the same problem the dynamic response curve for
node number 11 (See Fig. 27) is compared with the corresponding static
deflection curve on Fig. 28, It is of interest to note from Figs. 27 and
28 that as the load-masses are leaving the plate, rather radical changes
are occurring in the periods of vibration of the system. Such changes did
not, in general, occur for the cases when the mass of the load or loads
was not included in the analysis.

For the latter problem discussed above, for which 75 degrees of
freedom were used, the computer required 34 min. 7 sec. for central
processing time.

|
B. Cylindrical Shell

1. General
Numerical results are presented here for a circular cylindrical
shell subjected to impact loads. The loads considered are applied in such
a4 manner as to permit the use of double symmetry. ‘
Since the framework analogy adopted here has not been previously
used for the static analysis of cylindrical shells, a cylindrical shell

subjected to static loads is considered to illustrate the accuracy of this

framework analogy for a particular problem.
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The static problem considered here has been used by Mohraz and
Schnobric:h31 to compare their solution to a Fourier series solution of the
differential equation. The circular cylindrical shell is subjected along its
longitudinal edges to a sinusoidal load as indicated on Fig. 29. The trans-
verse edges of the shell are supported by diaphragms and the longitudinal
edges are free. The dimensions of the shell, along with the shell material
properties, are shown on Fig. 29. In Table 3 are compared the radial
center node deflections for various grid sizes for a shell quadrant. Also
shown in the table is the result obtained by Mohraz and Schnobrich31 and
the one obtained from a Fourier series solution31. It is seen that 6x6 and
7x7 quadrant grids yield answers that differ from the Fourier series solu-
tion by 9.7% and 7.2%, respectively.

2. Impact Loads

Numerical results presented are for a constant and a triangular
impact load. For both cases, the rotary inertia effect of the structure has
been neglected, and the mass matrix has been obtained by the direct lumping
of mass parameters as described in the Appendix.

The circular cylindrical shells used for the two problems in this
‘section, together with their loadings, are shown on Figs. 30 and 31.
Double symmetry, with a 6x6 grid for a quadrant, is used for both problems.
The loads shown on the figures are applied radially at the nodes. The shell
material has a modulus of elasticity of 30,000 ksi and a Poisson's ratio of
0. 30. Fig. 32 shows the response curve for the radial deflection of the

center node.




TABLE 3

Deflections of a Cylindrical Shell (in.)

3x3 Quadrant Grid
4x4 Quadrant Grid
5x5 Quadrant Grid
6x6 Quadrant Grid
7x7 Quadrant Grid
Mohraz and Schnobrich

Fourier Series

Radial Deflection at Center

0. 6508
0. 7580
0.8198
0. 8575
0.8819
0. 888

0.95
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For the problem of Fig. 30, the shell is completely fixed at its
boundaries. With only a quadrant of the shell used in the solution, 181
degrees of freedom were considered. The response curves for the radial
deflections of the center node and node number 28 (See Fig. 30.), along
with the corresponding static deflections, are shown on Figs. 32 and 33.

- With a time interval h of 0. 10x10'4 seconds used for this problem, the
central processing time required for the computer was 7 min. 39 sec.

For the problem of Fig. 31, the transverse ends of the shell are
supported by diaphragms and the longitudinal edges are hinged. 204 degrees

f freedom are considered for a quadrant of this structure. The response
curve for the radial deflection of the center node is plotted on Fig. 34
along with the static deflections. The central processing time required
by the computer for this solution was 9 min. 23 sec., with a time interval
of 0. 10x10™4 sec. being used.

To draw any conclusions on the dynamic behavior of cylindrical
shells, additional problems have to be studied. Since the solution of
cylindrical shell problems requires the consideration of a much larger
number of degrees of freedom than does the solution of plate problems, the
‘study of moving loads and load-masses requires considerably more com-

puter time and storage capacity for cylindrical shells than for plates.
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FURTHER APPLICATIONS OF THE METHOD

The method of analysis developed in this research can be modified
to analyze various other types of structures.

The extension of the procedure to composite structures is obvious.
All that is required is to include the stiffness matrix for each additional
structural component in the analysis. Thus, for example, flat slabs sup-
ported on columns or plates with stiffening beams can be analyzed. More
complex composite systems, as those associated with aircraft, space
vehicle, and nautical structures can be analyzed as well. The work of
H. Allik1 on the response of space frames to dynamic loadings is of interest
in conjunction with these modifications.

Using triangular elements®’ & 27,28

, the procedure presented can
be modified to analyze shells and plates of arbitrary shape. Changes have
to be made only to account for the different stiffness matrix sizes.

The method of analysis presented can readily be applied to plates
and shells of variable thickness. With the thickness varying from point to
point in the continuous medium of the structure, an approximate element

stiffness matrix can be calculated by using for the element thickness the
average of the thicknesses at the nodes of the elementz. Numerical ex-
amples of static problems for plates with variable thickness have been ob-
tained by R. J. Melosh2 and by O.C. Zienkiewicz and Y. K. Cheung4.

Melosh2 has also analyzed for static loading a low aspect ratio wing by

considering it as a plate of variable thickness, with spar and rib stiffnesses




100

included only approximately. In general, these stiffnesses can be included
more exactly as indicated by M. J. Turner et a141. All of the problems
referred to above can be analyzed for dynamic loadings by modifications
of the procedure that has been presented.

The procedure that has been presented can also be used for ortho-
tropic plates by substituting the orthotropic plate element stiffness matrix
derived by O.C. Zienkiewiecz and Y. K. Cheung4 for the stiffness matrix
that has been used here,

Plates and shells with openings can also be analyzed for dynamic
loadings. It is necessary only to omit the element stiffness matrix or
matrices corresponding to the physical elements omitted. However, it is
expected that in the areas of stress concentration near the opening, poor
approximations are obtained with rectangular elements unless a relatively
fine grid is used for the whole structure. It is therefore advantageous to
use triangular elements for such a problem, so that a relatively fine grid
can be used near the opening while a more coarse grid can be adopted for
the remainder of the structure.

Recent developments of element stiffness matrices for solids8’ 42, 43
‘enables the analysis at such structures for dynamic loadings by modifica-
tions of the method presented here. The assumed displacement functions
used by R. J. Melosh""‘3 to derive a solid element stiffness matrix can be
adopted in conjunction with the necessary modifications of the procedure
to replace, for example, the displacement functions Ai (x,y) used here for

the plate analysis.
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SUMMARY AND CONCLUSIONS

A numerical method has been presented for the analysis of thin
rectangular plates and cylindrical shells subjected to moving loadings.
Stationary time-varying loads, as well as multiple loads and load-masses
moving at constant velocity have been considered in the analysis. Elastic,
small deflection theory was used in the formulation of the problem.

For the rectangular plate as well as the cylindrical shell, the con-
tinuous medium of aninfinite number of degrees of freedom was reduced to
a system with a finite number of degrees of freedom by means of a frame-
work analogy. Displacement functions were assumed for the finite ele-
ments to obtain equivalent node forces for the applied force and mass load-
ings. The simultaneous differential equations of motion governing the be-
havior of the finite element structures were solved by the linear accelera-
tion method of numerical integration. The method of analysis presented is
equally valid for arbitrary boundary conditions and for arbitrary interior
restraints,

Numerical results have been presented for square and rectangular
plates, for continuous plates, and for circular cylindrical shells. Plates
subjected to impact loads, moving forces and moving load-masses were
included in the numerical studies. For the cylindrical shells, only impact
loads were considered. For each of the problems solved, only node dis-

placements were calculated.




The numerical studies indicated that a relatively coarse grid may
be used for the finite element model to replace the actual continuous
medium of the structure in order to yield acceptable results for the de-
flections. For the square and rectangular plates considered, a 6x6 grid
was sufficient to study the deflections.

The acceptability of a relatively coarse grid for the study of de-
flections leads to the conclusion that, for the loadings considered, the
dynamic response depends predominantly on the lower natural modes of
vibration of the system considered.

In the numerical studies, comparisons were made for the effect of
time intervals used for integration, grid sizes used for the finite element
structure, various velocities of moving loads and load-masses, and paths
of the traverse of moving loadings. However, it was seen that numerous
additional studies would have to be made to draw general conclusions on
the effect of the various parameters on the dynamic behavior of rectangular
plates and cylindrical shells.

Modifications of the procedure presented for other types of struc-

tures has been discussed.
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NOMENCLATURE

x-coordinate of forcing function

angles defined on Fig. 7

area of beam i of a framework model element; abbreviation
for Ai x,v)

displacement function (See Appendix. )

y-coordinate of forcing function

displacement function (See Appendix. )

length of a typical element in x-direction

geometric transformation matrix for shell element i
element of matrix [d*]

matrix defined by Eq. (23b) or (44c)

element r matrix defined in Eq, (22) or (43)

number of degrees of freedom of the structure in deflection

matrix defined by Eq. (24b) or (45b)

matrix defined by Eq. (68b)

modulus of elasticity of plate material
matrix defined in Eq. (5la), (55a), (61), or (69a)

i-th equivalent node force

vector of equivalent node forces for element i
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vector defined in Eqs. (51b), (55b), (61), or (69b)
torsion constant, used with a subscript
plate or shell thickness; time increment

beam moment of inertia for framework model, used with
subscripts or superscripts

element of matrix [ k*]

stiffness matrix for the discrete element structure
matrix defined by Eq. (23a) or (44b)

stiffness matrix for i-th element framework model
matrix defined in Eq. (22) or {43)

matrix defined in Eq. (24c), (45c), or (60a)

matrix defined by Eq. (68c)

length of element in y-direction

plate length in X-direction

plate length in Y-direction

element of matrix [m*]

mass matrix for the discrete element structure

mass matrix for element i

matrix defined in Eq. (23c) or (44d)
mass of moving load

number of equivalent node moments from all moving masses




matrix defined by Eq. (24a) or (45a)

matrix defined by Eq. (68a)
number of degrees of freedom of the structure

magnitude of forcing function

i-component of forcing function P
i-th node displacement component in system coordinates

vector of node displacements in system coordinates

vector of node displacements of element i in system
coordinates

i-th component of generalized node forces in system
coordinates

vector of node forces due to externally applied forces

vector of equivalent node forces
vector of external loads applied at nodes

vector defined by Eq. (68d)

distance between diagonally opposite corners of an element

vector of resultant node forces from all external loadings

vector of inertia forces at nodes

vector of inertia forces at nodes of element i

i-th component of generalized internal node forces of an
element

vector of internal forces at nodes of element i
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w (x,y,t)

w, (%y,t)
w (x,y,t)

Xyz
XYZ

du,
i

time coordinate

shortest natural period of discrete element structure
i-th node displacement of an element in element coordinates

vector of node displacements in element coordinates

vector of node displacements of element i in element
coordinates

velocity of moving forcing function in x-direction
velocity of moving forcing function in y-direction

deflection of an element in z-direction under moving mass

virtual deflection of an element in z-direction under moving
forcing function

virtual displacement of an element in x-direction at point of
application of forcing function

element coordinates of plate or shell element
system coordinates of plate or shell

i-th virtual element node displacement
Poisson's ratio of plate material

denotes inverse of a matrix
denotes transpose of a matrix
denotes differentiation with respect to time

denotes differentiation with respect to x
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APPENDIX

A. FElement Stiffness Matrices

The stiffness matrix for the framework model shown in Fig. 3,
which has been substituted in the analysis for each typical plate element
shown on Fig. 2, is given on the next page. This stiffness matrix is defined
by Eq. (1).

The stiffness matrix for a cylindrical shell element can either be
assembled from the stiffness matrices of each of the six beams of the frame-
work element shown with its properties on Fig. 8, or it can be assembled by
first considering the stiffness matrix for a plate in flexure, shown on p, A2,
and for a plate under plane stress. The latter approach is adopted here.
Therefore the element stiffness matrix for plane stress has been assembled,
and is shown on p, A3. For convenience, the rows and columns of this
matrix have been numbered to correspond to the actions indicated on Fig. 5.
The stiffness coefficients used in the plane stress stiffness matrix on p. A3

have the following values:
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Having the element stiffness matrix for bending out of plane, as shown on
P. A2, and the element stiffness matrix for plane stress, as shown on p.
A3, the 24x 24 cylindrical shell element stiffness matrix is assembled by
placing each of the elements of the first two matrices in the appropriate

row and column of the shell element stiffness matrix. Thus, for the




A5

plane stress stiffness matrix shown on p. A3, an element in row number i
and column number j is placed into the i-th row and j-th column of the
shell element stiffness matrix. The elements of the stiffness matrix for
out-of-plane bending shown on p. A2 are stored in the shell element stiffness
matrix in such a manner that their action numbers as indicated on Fig. 2,
used in conjunction with Eq. (1), will correspond to the numbering of the
same actions on Fig. 5 which is used in conjunction with Eq. (26) defining
the shell element stiffness matrix. Since the foregoing procedure can
easily be followed in programming for a computer, it was deemed unnec-
essary to present here the assembled cylindrical shell element stiffness
matrix,

B. Geometric Transformation Matrix for a Shell Element

The 24x 24 geometric transformation matrix [Ci] for shell element
i, which relates node displacements q, in the system coordinates to node
dispiacements U in the element coordinates, as indicated by Eq. (27), is

given by

[ci] - (L]
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where all the elements not shown are zero, and where

1 0 0
[L] =| 0 cosaL sinaL
0 -sin aL cos aL
and
1 0 0
[L’]: 0 cosa, -sina
R R
0 sin aR cos aR

where the angles ar and aR are shown on Fig. 7. For a circular cylindrical

shell aL is equal to aR.

C. Plate Element Mass Matrix

An approximate mass matrix for a plate element is obtained by direct
lumping of mass parameters at the nodes at the element. The following as-
sumptions are used in this approximation:

1). One quarter of the element mass is assumed to be concentrated

at each node of the element.

2). For rotary inertia effect from the element, one quarter of the
element is assumed to rotate as a rigid body about each of the
nodes of the element, and the angle of rotation is assumed to be
equal to that of the corresponding node.

Then the diagonal elements of the plate element mass matrix are:

=ucL2
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where ux = plate mass per unit area
h = plate thickness
All other elements of the matrix are zero.
Alternately, the mass matrix can be obtained by using the assumed
displacement function Ai(x, y) referred to in the derivation of equivalent
4, 45

node forces. It has been shown 44, that the element of the i-th row and

j=th column of the resulting plate element mass matrix is

¢cL. L
2 2
my = s J s A, (%,7) A (x,y) dxdy (A1)
J
-cL -L
2 2

D. Cylindrical Shell Element Mass Matrix

As for a plate element, also for a cylindrical shell element an
approximate mass matrix is obtained by direct lumping of mass parameters
at the nodes of the element. The assumptions used for the plate element
mass matrix also hold here. Moreover, it is assumed here that the effect
of the rotary inertia associated with the node rotations about the Z-axis,
which is normal to the element, is negligible because the rotations referred

to are very small. With these assumptions, the diagonal elements of the
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24x 24 shell element mass matrix are:

m; === where i=1,23,7,809,13,14,15,19, 20, 21

2
m, = “lgL <%’— + % >Where i=4,10,16,22

2/.2.2 2
cL”(c'L h .
m, “16 < 2t 3 ) where i = 5,11, 17, 23
m, =0 where i = 6,12,18, 24

i
All other elements of the matrix are zero. It should be noted that when the
foregoing mass matrix is transformed into system coordinates, in accord-
ance with Eq. (35), it will no longer be a diagonal matrix.
Alternately, the mass matrix can be obtained by using the assumed
displacement functions Ai(x, y) and Bi(x, y). Thus the elements of the i-th
row and j-th column of this mass matrix can be calculated as follows:

By Eq. (Al) for i and j = 3,4,5,9,10, 11, 15, 16, 17, 21, 22, 23, and by

oL L
2 2
- “S s B, (5,7) B, (x, ) dxdy (a2)
oL )L
2 2

foriandj=1,2,"7, 8, 13, 14, 19, 20.
All other elements of the matrix are zero.

E. Displacement Functions Ai (x,y)

Ai (x,y) is the deflection of the plate element due to a node dis-
placement u, =1and u; = 0 for j #i. (See Fig. 2.) Since no exact functions

are available, assumed displacement functions Ai (x,y) are used herein.




Noting that there are 12 degrees of freedom for a discrete plate element, it

is assumed that Ai (x,y) can be expressed as the following polynomial 1,4,5
with 12 undetermined constants
i i i i i i i
= 2 2 3
A, (x,y) Cp +CgX +Cgy +C X2 + C Xy + Coy? + CnX
ig i 9. i g i i s
+ CgXAY +Cgxy? + ¢ gy3 + cux3y + C1oXY (A3)

where cil, ciz, ceey Cliz are the undetermined constants for Ai (%, y).

By satisfying the 12 node displacements with Eq. (A3) and its derivatives
for the condition that u, = 1 and uj = 0 for i#j, a set of 12 simultaneous
algebraic equations is obtained for the evaluation of c,, ciz, ceaey ciz, in
which x and y in any one equation are evaluated in terms of the coordinates
of that node at which the displacement is satisfied by the equation. By re-

peating this procedure fori=1,2, ..., 12, the following expressions for

Ai (x,y) are determined.
3 3 3 3

A (5,Y) = + 5 (2-3R-35+4%5+% 5 - % §- %) (A4)
... 2 _2 3 3,
A, (x,y)=+3 5555 -F %7 -F -3 Y5 (A5)
p .2 .. 3 2 3
A3(x,y)—-§( -X-y-X +Xy +X +xy-xy)T (A6)
3 3 3 3
A (x,y)_+ (2+3x-3y 4xy X +y +X y+Xy ) (A7)

- .. .2 _2 3 _3 L
A (x,y)_+ (1+x-y-xy-y -Xy +y +xy)§ (A8)
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2 3 2 3

1 - - - - - -
A (X,Y)='§('1'X+Y+X +Xy +X -XYy-X y)%}'—— (A9)

(o]

y
) . 3 3 3 3
A.7 (x,y)=+-§(2-3x+3y-4xy+x -y +X Yy +Xy) (A10)

2 2 3 3

1 - - - - - - -
Ay (oy)=+g(-1+X-F+i+7 -5 +§ -5 5 (A11)
. oL 2 8 2 8 o
Ag ®%y)=-g@Q-x+y-x -Xy+X -Xy+X A hru (A12)
1 _ . .. 3 3 3 _3
A y)=+5(243x +3y +4xy-x -y -Xy-xy) (A13)
1 _ . .. .2 _2 3 __3L
All(x,y)=+§(-1-x-y-xy+y +Xy +y +Xy )—2- (A14)
1 .. 2 3 2 3 L
A Xxy)=-5(~1-x-y+x =-Xxy +X +Xy+x Y (A15)
12 8 2
- 2X
where X =,
)
7

The derivatives of Ai (x,y) are

BAi
dX AI,X x,y) ~cL A1,)—c
aAi 2
3y Ay VL Ay
%A,
Ay = A o
axz i, xx (L)2 i, xx
%A
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where the derivatives of Ai (x,y) with respect to X and ;r are obtained from

Eqs. (A4) thru (A15).

F. Displacement Functions Bi (%,y)

B, (x,y) are defined analogically to A.1 (x,y) except that the displace-
ments associated with Bi (x, y) correspond to plane stress condition of a flat
shell element. Again, since no exact functions are available for B, x,v),
these displacements functions will be assumed. Recalling that eight dis-
placements are to be considered here, it is assumed 46 that

cix+cix - v(cix+lcix2)
1 2 XY 3 4

=

Bi (X, Y) =

N

1.3 2 i i =
-5 ¢,y +c6y+c7> fori=1,7,13,19

1 1 1 2
Bi(X’Y)='E <- ”(CIY"'Z zy)+cy+c4xy

i i i i .
C X +2(1+v)c5x-c6x+08> for i = 2,8,14, 20

N -

where cil, ciz’ cens cié are eight undetermined constants for Bi x,y).
The sign convention and orientation for the displacements referred to
above is the same as for u, indicated on Fig. 5. The procedure
for determining the eight constants for each Bi (x,y) is similar to the

method of finding the constants for Ai (x, y) explained in the previous sec-

tion. Since the constants depend on the elastic properties of the shell




Al2

material, the assumed displacement functions Bi (%, y) have not been

determined explicitly here.



